Ovipositor Needle I – Self-Propelling through Tissue

Developed in 2014, thickness 2 mm.

Wasp ovipositors  are thin and flexible needle-like structures used for laying eggs inside wood or larvae.  Wasp ovipositors are composed out of  longitudinal segments, called “valves”, that can be actuated individually and independently of each other with musculature located in the abdomen of the insect. In this way the wasp can steer the ovipositor along curved trajectories inside different substrates without a need for rotatory motion or axial push.

Inspired by the anatomy of wasp ovipositors, we developed an Ovipositor Needle containing a 2 mm thick “needle” composed out of four sharp and polished stainless steel rods, representing four ovipositor valves. The four valves can be individually moved forward and backward by means of  electromechanical actuators mounted in a propulsion unit that is standing on four passive wheels. If the needle is inserted into a gel that represents tissue, and if the four valves are sequentially moved forward and backward, the friction behaviour around the valves in the gel will result in a net pulling motion that drives the needle forward through the gel. The ovipositor needle is therefore self-propelling, meaning that it does not need a net pushing motion for moving forward through tissue like normal needles do.

Ovipositor Needle I is part of the  WASP project that focuses on the development of steerable needles for localized therapeutic drug delivery or tissue sample removal (biopsy). In a new prototype that is currently under development, we aim to extend the self-propelled needle with steering capabilities at an outer diameter of just 1 mm.

 

Publications