SIGMA Catheter – steering inside the Heart

Developed in 2016-2017, diameter Ø3 mm, lumen Ø1 mm

In recent years, steerable catheters have been developed to combat the effects of the dynamic cardiac environment. However, current solutions are bound to a number of limitations: (1) low torsion, (2) shaft shortening, (3) high unpredictable friction, and (4) coupled tip-shaft movements. These effects make it very hard to steer in tortuous blood vessel and inside the heart.

In order to tackle these limitations we developed a novel multi-steerable catheter prototype with four degrees of freedom. The tip has two steering segments that can be steered in all directions, controlled by two joysticks on the handle: one for the thumb and one for the index finger. The prototype features automatic lock of the steering angle once the joystick is released.

To solve the four limitations mentioned above we used eight miniature Bowden-cables inside of the flexible shaft for independent omnidirectional steering of each tip segment. As each segment can steer in all directions, twisting the shaft is not needy for directing the catheter tip, which solves the issue with low torsion (1). The issue with shaft shortening (2) is solved with the Bowden-cables which are axially incompressible. The Bowden cables generate very low predictable friction (3) and coupled tip-shaft movements (4) are absent as the Bowden-cables transfer the joystick motions directly to the tip without influencing the shaft.

The ability to steer inside the heart with a variety of complex shapes and curves opens great possibilities for complex catheter interventions. We evaluated our SIGMA catheter in a transparent 3D printed heart, based on MRI-images and created by the company Materialize, as well as ex-vivo in a beating porcine heart at the LifeTec Group. Both evaluations show very promising results and superior behaviour as compared to conventional steerable catheters.


Ali A., Sakes A., Arkenbout E.A., Henselmans P., Starkenburg R. van, Szili-Torok T., Breedveld P. (2019). Catheter steering in interventional cardiology: mechanical analysis and novel solution. Proc. Inst. Mech. Eng. Part H: Journal of Engineering in Medicine, 12 p.