Pressure Wave Catheter for Coronary Interventions

This research project is funded by the Netherlands Organization for Scientific Research NWO.

Crossing heavily calcified occlusions, such as Chronic Total Occlusions (CTOs), is challenging, resulting in undesirably low success rates between 50% and 90% depending on the operator’s experience and the characteristics of the CTO. The most common failure mode observed in the preferred treatment, the Percutaneous Coronary Intervention (PCI), is the inability to cross the occlusion due to buckling of the guidewire. The inability to cross the CTO often leads to procedural failure and can cause damage to the blood vessel wall.

In order to prevent buckling of the crossing tool and improve the procedural success rates of PCI, we developed a novel, well-working catheter prototype that can apply a mechanical impulse, defined as the integral of a peak force over a small time interval, on the CTO during the crossing procedure. Using an impulse to dynamically load the CTO  is advantageous as the impulse strongly decreases the buckling effect and the static forces on the CTO and its environment, minimizing the risk of damage to the blood vessel wall and the surrounding tissues.

During this TTW demonstrator project we will develop our patented catheter prototype further into a  handheld clinical prototype incorporating an  adjustable tip section as well as a dedicated input mechanism allowing for generating a single impulse as well as continuously vibrating motions. The efficiency and effectiveness of the clinical prototype will be evaluated on CTO models and during ex-vivo and in-vivo animal evaluations.


Interventional Ductoscopy – the EVAPORATE study

This research project is funded by the Netherlands Organization for Scientific Research NWO and the Dutch Foundation of Cancer Research KWF.

Ductoscopy is a minimally invasive micro-endoscopic technique that allows for direct visualization of the milk ducts of the breast through their natural orifices in the nipple. It can be performed under local anesthesia in daily outpatient routine and has proven to be safe with a very low risk on (mild) complications.

Nowadays, ductoscopy is only used as a diagnostic tool in patients suffering bloody nipple discharge, usually caused by small intraductal lesions, such as papillomas. Ductoscopy has the potential to become a preventive interventional approach to detect premalignant lesions,  but this is hampered by the limitations of the currently available instrumentation and the small size of the ducts. In collaboration with the UMC Utrecht we will develop a set of novel instruments for ductoscopy aimed at discovering, diagnosing and removing premalignant lesions in milk ducts of high risk women, thus possibly preventing them from getting breast cancer.

Novel Shooting Mechanism for Tissue Puncturing

In nature multiple animals have developed intriguing shooting mechanisms for food capture, defence, and reproductive reasons. Think for example on the amazing tongue shooting capability of the chameleon and the appendage strike of the mantis shrimp.

For a full overview of innovative and interesting shooting mechanisms in nature, we would like to refer to: Shooting Mechanisms in Nature: A Systematic Review by Sakes et al. [2016]

These shooting mechanisms can offer inspiration for new ideas on the technological development of fast acceleration mechanisms in medicine. High-speed shooting mechanisms can, for example, be used for the endovascular treatment of Chronic Total occlusions (CTOs). CTOs are heavily calcified and are thus difficult to puncture and cross with the small (0.36 mm) guidewire. The required force to puncture the CTO is often higher than the buckling force of the guidewire due to the low bending stiffness (EI) and long (unsupported) length (L). As a result, the guidewire often buckles. Buckling in turn causes procedural failure since the CTO cannot be crossed. Buckling of the crossing tool may be prevented by using a high-speed crossing tools as this increases the buckling resistance of the guidewire and potentially minimizes the puncture force of the CTO.

With this in mind an innovative high-speed crossing tool was developed using nature’s shooting mechanisms as inspiration. The crossing tool (OD 2 mm) incorporates an innovative spring-driven indenter and decoupling mechanism for high-speed puncturing of the proximal cap. First tests have been very promising. The prototype hit the CTO with an average speed of 3.4 m/s and was able to deliver a maximum force of 20 N (without buckling), which is well over the required 1.5 N to puncture the CTO. Additionally, the device was tested on CTO models made out of calcium and gelatine of different consistency. Puncture was achieved with on average 2.5 strikes for heavily calcified (77 wt% calcium) CTO models.

We feel that with continued development of this technique it will become possible to deliver high forces in ultra thin devices, such as guidewires, and as such increase the success rate of the the endovascular treatment of CTOs and other minimal invasive applications.

For a video of the prototype hitting a fixed surface, please see: Velocity_Max_10fps (Converted), which is slowed down 1000x.

3D Printed Hand: FA3D

The FA3D hand is a 3D printed Hand printed with a flexible filament. The fingers of the hand have multiple joints, allowing for adaptive gripping. The fingers have elastic joints and can be printed as one part. Therefore assembly of the finger phalanxes is not necessary.

FA3D Hand
FA3D Hand

Due to its adaptive gripping, the FA3D Hand can hold a broad range of objects.

FA3D Hand holding paper cup

The FA3D Hand consists of 8 3D-printed parts. The parts can be  connected with standard bolts and nuts. Steel cables are used to actuate the fingers.

Parts of the FA3D Hand
Parts of the FA3D Hand

The hand is body powered. It can be controlled by pulling the control cable, by using a shoulder strap.

User wearing the FA3D Hand
User wearing the FA3D Hand


Ovipositor Needle I – Self-Propelling through Tissue

Developed in 2014, thickness 2 mm.

Wasp ovipositors  are thin and flexible needle-like structures used for laying eggs inside wood or larvae.  Wasp ovipositors are composed out of  longitudinal segments, called “valves”, that can be actuated individually and independently of each other with musculature located in the abdomen of the insect. In this way the wasp can steer the ovipositor along curved trajectories inside different substrates without a need for rotatory motion or axial push.

Inspired by the anatomy of wasp ovipositors, we developed an Ovipositor Needle containing a 2 mm thick “needle” composed out of four sharp and polished stainless steel rods, representing four ovipositor valves. The four valves can be individually moved forward and backward by means of  electromechanical actuators mounted in a propulsion unit that is standing on four passive wheels. If the needle is inserted into a gel that represents tissue, and if the four valves are sequentially moved forward and backward, the friction behaviour around the valves in the gel will result in a net pulling motion that drives the needle forward through the gel. The ovipositor needle is therefore self-propelling, meaning that it does not need a net pushing motion for moving forward through tissue like normal needles do.

Ovipositor Needle I is part of the  WASP project that focuses on the development of steerable needles for localized therapeutic drug delivery or tissue sample removal (biopsy). In a new prototype that is currently under development, we aim to extend the self-propelled needle with steering capabilities at an outer diameter of just 1 mm.