Category Archives: Wave

Pressure Wave Catheter for Coronary Interventions

This research project is funded by the Netherlands Organization for Scientific Research NWO.

Crossing heavily calcified occlusions, such as Chronic Total Occlusions (CTOs), is challenging, resulting in undesirably low success rates between 50% and 90% depending on the operator’s experience and the characteristics of the CTO. The most common failure mode observed in the preferred treatment, the Percutaneous Coronary Intervention (PCI), is the inability to cross the occlusion due to buckling of the guidewire. The inability to cross the CTO often leads to procedural failure and can cause damage to the blood vessel wall.

In order to prevent buckling of the crossing tool and improve the procedural success rates of PCI, we developed a novel, well-working catheter prototype that can apply a mechanical impulse, defined as the integral of a peak force over a small time interval, on the CTO during the crossing procedure. Using an impulse to dynamically load the CTO  is advantageous as the impulse strongly decreases the buckling effect and the static forces on the CTO and its environment, minimizing the risk of damage to the blood vessel wall and the surrounding tissues.

During this TTW demonstrator project we will develop our patented catheter prototype further into a  handheld clinical prototype incorporating an  adjustable tip section as well as a dedicated input mechanism allowing for generating a single impulse as well as continuously vibrating motions. The efficiency and effectiveness of the clinical prototype will be evaluated on CTO models and during ex-vivo and in-vivo animal evaluations.