Multi-Steerable Cardiology Instruments – MULTI

This research project is part of the iMIT program and funded by the Netherlands Organization for Scientific Research NWO. The iMIT Program, executed by a community of Dutch Universities, university medical centers, and companies, aims to develop instruments for minimally invasive interventions. The program will result in the development of interactive Multi-Interventional Tools (iMIT)  that can adapt to their environment and integrate diagnostic and therapeutic functionalities, thus permitting effective single-procedure interventions.

Project MULTI – Design and development of multi-steerable tools for cardiac interventions

Cardiac Catheters  
The field of interventional cardiology is a growing branch of cardiology where minimally invasive instrumentation is of high importance. Catheters are among the most versatile and essential instruments used in interventional cardiology. Where in the past they were designed as flexible tubes, meant for monitoring or drug delivery, today catheters have evolved into more complicated and steerable instruments with additional tip functionality. As such, a large variety of commercially available catheters exist, being adopted in treatments of, for instance, heart rhythm defects and heart valve disease.

Current Difficulties
Despite their frequent and essential use, currently existing catheter designs have limited functionality as a result of several difficulties. Precise positioning of the catheter tip in the heart remains one of the biggest challenges as a result of complex 3D shapes inside heart and the absence of vessel wall support. In addition to that, respiration and heartbeat lead to a constant movement of the heart and changes in blood flow inside the cardiovascular system. Therefore, the use of catheters for complex interventions inside the heart requires a catheter tip that can be positioned accurately at the required location without damaging the heart or other surrounding anatomy. Of specific interest are cardiac biopsies and ablations, where mal-positioning of the catheter due to a lack of steerability can results in severe complications such as ventricular perforation or heart block. This research project at the TU Delft therefore focuses on designing and developing a catheter that is multi-steerable and is able to be directed towards and positioned inside any location in the beating heart.

Multi-Steerable Catheter
The aim of this project is to develop new and multi-steerable catheter technology based on the cable-ring technology and human factor experience at the TU Delft. First catheter concepts will allow left/right and forward/backward motion without rotation of the catheter shaft. More advanced concepts will be included with electro-mechanic controls and multiple steering segments that will allow for complex 3D tip motion. Finally, in-vitro evaluation on an isolated beating heart will take place to enable accurate positioning under physiological circumstances. The project is intended to result in explicitly evaluated multi-steerable catheter prototypes that are ready for commercialization. The realization of such a multi-steerable catheter will offer application in more complex minimally invasive cardiac interventions such as annuloplasty procedures, cardiac tissue resections, precision cardiac biopsies, septal defect closures, and valve implantations. Moreover, our focus is on development of steerable catheters for cardiac biopsies and ablations.