Category Archives: Maneuverable Devices

MemoSlide – Moving like a Mechanical Snake

Developed in 2016-2017, 13 cm wide, 20 cm long, and 10 cm high.

During complex surgical procedures, such as in ENT or skull-base surgery, there is a need to approach difficult-to-reach locations via narrow anatomic pathways. Performing surgery along complex 3D pathways requires a snake-like instrument able to memorize the 3D shape of the followed pathway and shifting the shape backward as the instrument moves forward with its head steering in a new direction. This snake-like method of locomotion is called “follow-the-leader locomotion”, in which the head is the “leader” and the body follows the pathway of the head, see the following animations:

Follow-the-leader locomotion requires a segmented multi-steerable instrument such as our MulfiFlex as well as a memory in which the angles of the segments can be stored and shifted to the neighbouring segments as the instrument moves forward. In robotic follow-the-leader approaches, the actuation usually occurs locally, within the segments, by miniature electric motors controlled by a computer that memorizes the shape. This approach will, however, result in a device too large for surgical applications with a maximum instrument diameter of Ø5 mm. Instead, the actuators can be stored in a handle or console placed outside the patient, so that larger motors can be used in combination with cables or rods that transfer the motion to the snake-like tip. Although feasible, using  electric actuators controlled by a computer will result in a complex and expensive system requiring additional safety measures to ensure reliability during surgery.

In a desire to create a relatively low-cost follow-the-leader system that combines high safety with small dimensions, we explored an alternative follow-the-leader approach by using a mechanical memory inspired by the technology of mechanical calculators such as Charles Babbage’s Difference Engine.

MemoSlide features two mechanical memory registers: a static register (green in the design drawing below) and a moveable register (red) in which the angles of 11 tip segments can be stored, the angles represented by 11 small Ø3 mm ball-bearings that can slide sideways through slots in the brass top plate . The two registers are mutually coupled via a system of ball-bearings and cams underneath the brass top plate. Both registers can be locked and unlocked, and the moveable register can be shifted one segment forward or backward relative to the static register. The position of the first tip segment can be controlled by turning the blue steering wheel. Turning the crank around the steering wheel then results in  a sequence of locking, unlocking and shifting motions, controlled by the four brass cams  at the corners of the device, to memorize and shift the position of the ball bearings backward along the registers. The movie below shows an example in which MemoSlide is programmed with a sinusoidal shape that is shifted backward along the device (and then forward again, as the device works in two directions).

Although in principle suited for controlling the shape of a snake-like surgical device, MemoSlide is in its current configuration still too complex and limited to 2D pathways. Based on our experience with MemoSlide, we are currently developing a new mechanical system suited for memorizing 3D shapes and sufficiently simple for integration in the handle of a snake-like  surgical device. We will keep you posted!


Henselmans P.W.J., Gottenbos S., Smit G., Breedveld P. (2017). The MemoSlide: an explorative study into a novel mechanical follow-the-leader mechanism. Proc. of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. Vol. 23, No. 12, pp. 1213-1223.


Accura: 8DOF Accurately Steerable Platform

As of today, Chronic Total Occlusions (CTO) represent the most technically challenging lesions interventionists face during Percutaneous Coronary Interventions (PCI), with considerably lower success rates (50-90%) in comparison to semi-occluded and acutely occluded arteries [1]. The main technical challenge in PCI of CTOs lies in successfully puncturing and crossing the CTO with a guidewire.

In this section we will focus on crossing challenges. For solutions to puncture the CTO, see the Pulze Hammer I, Pulze Hammer II (coming soon), Cradle Catheter (coming soon), and Wave Catheter (coming soon).

Crossing is challenging as the guidewire cannot be actively steered and deflection can thus not be compensated. This can lead, amongst others, to dissection of the blood vessel wall or subintimal crossing, in which the guidewire crosses the CTO via the blood vessel wall (between the intima and adventitia). Furthermore, it is often challenging to navigate through tortuous CTOs.

A steerable crossing device could be the solution to current crossing challenges, as it will give the interventionist the freedom to actively navigate through the vascular system and CTO freely. Therefore, a steerable prototype nicknamed the Accura was designed with an 8 Degrees Of Freedom (DOF) cable actuated tip (Ø 2 mm, L = 32 mm) divided over 4 steering segments; allowing for constructing complex S-curves. The tip contains a lumen (Ø 1 mm) to allow for the insertion of, amongst others, a balloon catheter, a guidewire, or an IntraVascular UltraSound probe (for visualization purposes). The steerable tip is connected to a rigid shaft (Ø 2 mm, L = 200 mm), which in turn is connected to the handle. The handle consists of an innovative combined locking and steering mechanism to lock the tip position in place and to precisely steer each segment separately. This construction allows for both the tip position and direction to be changed independently, allowing for a scanning movement.

The multisteerable tip has been successfully combined with a single element forward-looking IVUS transducer and Optical Shape Sensing (OSS) fiber to reconstruct a wire frame in front of the tip. This combination will allow for reconstructing and scanning a 3D volume in front of the tip, which can be used to determine the most suitable entry location. Furthermore, the addition of the OSS fiber can potentially minimize the use of X-Ray and contrast fluid during the intervention.

Even though it is still a long way towards a fully applicable clinical tool, the tests have given first insights into the possibilities and advantages of having such a tool in PCI. Currently, a multisteerable catheter is under development.


  • Sakes A., Ali A., Janjic, J., and Breedveld P. (2018). Novel Miniature Tip Design for Enhancing Dexterity in Minimally Invasive Surgery. Journal of Medical Devices. Accepted.


Volt – 3D-Printed Bipolar Laparoscopic Grasper

Developed in 2016, thickness 5 mm, complex components made by 3D-printing.

Controlling blood loss is a major challenge during laparoscopic surgery. In an effort to control blood loss, electrosurgical tools are often used. In current electrosurgical instruments, a high frequency electrical sinusoidal wave is passed through the patient’s body from an active electrode to a return electrode to minimize bleeding. Depending on the exact configuration of the electrosurgical instrument, it can be used to coagulate, cut, or destroy the tissue.

Even though current bipolar electrosurgical instruments have proven effective in minimizing blood loss, advancement is needed to improve the dexterity and adaptability of these instruments. With current advances in 3D-print processes and its integration in the medical field it has become possible to manufacture patient- and operation-specific instruments. Furthermore, by combining 3D-print technology with smart joint designs, the dexterity of the instruments can be significantly improved.

In order to overcome these challenges, we have developed the first 3D-printed steerable bipolar grasper (5 mm), named Volt, for use in laparoscopy. This 3D-printed design allows for easy adjusting of the geometry of the shaft and tip based on the patient’s anatomy and operation requirements. The grasper significantly improves dexterity by the addition of two planar joints allowing for ±65° for sideways and ±85° for up- and downwards movement. Furthermore, due to smart joint design, high bending stiffness of  4.0 N/mm for joint 1 and 4.4 N/mm for joint 2 is achieved, which is significantly higher than that of currently available steerable instruments. The tip consists of two 3D-printed titanium movable jaws that can be opened and closed with angles up to 170° and allows for grasping and coagulating of tissues. In order to actuate the joint, tip, and electrosurgical system, as well as to tension the steering cables, a ring handle was designed similarly in design to the one of Dragonflex.

In a proof-of-principle experiment, Volt was connected to a electrosurgical unit (Erbe) and was able to successfully coagulate fresh pig liver. Tissue temperatures of over 75 °C were achieved with an activation time of ~5 s.





Ovipositor Needle II – Self-Propelling & Steering through Tissue

Developed in 2016, diameter 1.2 mm (tip) & 0.75 mm (body).

A wasp ovipositor is a needle-like structure composed out of three elements, called valves. A female wasp uses this structure to drill into wood or fruit and deposit eggs inside a living host. The propagation of the ovipositor through the substrate is achieved by a push-pull mechanism, in which one of the valves is pushed while the other two are pulled.

Inspired by the ovipositor of parasitoid wasps, we developed a new Ovipositor Needle with a diameter of 1.2 mm at the tip and 0.75 mm along the body. The needle consists of six superelastic Nickel Titanium (NiTi) wires (Ø 0.25 mm, length 160 mm) concentrically arranged around a seventh NiTi wire. The seven wires are interconnected at the tip with a flower-shaped ring (Ø 1.2 mm, length 2.0 mm), manufactured for minimal resistance during propulsion. The ring has a central hole to which the central wire is glued and six holes through which the six other wires can slide back and forth.

Each proximal end of the six movable wires is connected to a stepper motor, in which a leadscrew-slider mechanism converts rotational motion into linear motion. During an experiment, the needle was inserted in a stationary tissue-mimicking phantom, placed on a cart with low-friction wheels. The wires were sequentially moved back and forth inside the phantom, generating a net pulling motion of the phantom towards the actuation unit, and resulting in the needle moving forward inside the phantom. Different sequences of wire actuation were used to achieve both straight, curved and S-shaped trajectories.

In a follow-up prototype we changed the shape of the interlocking ring from cylindrical to conical to investigate the effect of pre-curved wires. We found out that pre-curved wires facilitate steering, however, at the drawback of a slightly larger tip diameter due to the use of a conical flower-ring.

Ovipoistor Needle II is, to our knowledge, world’s thinnest self-propelled-steerable needle. Our novel bio-inspired steering and propulsion mechanism allows for the design of extremely long and thin needles that can be used to reach deep targets inside the body without a risk of buckling and with the possibility to correct the trajectory.

Ovipositor Needle II is part of the WASP project that focuses on the development of steerable needles for localized therapeutic drug delivery or tissue sample removal (biopsy). We are currently  working on further miniaturization to diameters <0.5 mm.

(Picture at the top adapted from “Braconid Wasp Ovipositing” by Katja Schulz is licensed under CC BY 2.0.)


Ovipositor Needle I – Self-Propelling through Tissue

Developed in 2014, thickness 2 mm.

Wasp ovipositors  are thin and flexible needle-like structures used for laying eggs inside wood or larvae.  Wasp ovipositors are composed out of  longitudinal segments, called “valves”, that can be actuated individually and independently of each other with musculature located in the abdomen of the insect. In this way the wasp can steer the ovipositor along curved trajectories inside different substrates without a need for rotatory motion or axial push.

Inspired by the anatomy of wasp ovipositors, we developed an Ovipositor Needle containing a 2 mm thick “needle” composed out of four sharp and polished stainless steel rods, representing four ovipositor valves. The four valves can be individually moved forward and backward by means of  electromechanical actuators mounted in a propulsion unit that is standing on four passive wheels. If the needle is inserted into a gel that represents tissue, and if the four valves are sequentially moved forward and backward, the friction behaviour around the valves in the gel will result in a net pulling motion that drives the needle forward through the gel. The ovipositor needle is therefore self-propelling, meaning that it does not need a net pushing motion for moving forward through tissue like normal needles do.

Ovipositor Needle I is part of the  WASP project that focuses on the development of steerable needles for localized therapeutic drug delivery or tissue sample removal (biopsy). In a new prototype that is currently under development, we aim to extend the self-propelled needle with steering capabilities at an outer diameter of just 1 mm.



HelixFlex – Squid-like motion by helical steering

Developed in 2013-2014, diameter 5 mm, steering range: ±150º in all directions.

Nature exhibits two inherently different approaches for creating maneuverable structures: the endo- or exoskeleton approach, and the hydrostatic skeleton approach. An endo- or exoskeleton  is a rigid structure  connected by joints that enable motion, for example in our own body.  A hydrostatic skeleton, however, is a compliant structure solely contructed out of soft tissues, for example in the tentacle of a squid or in the trunk of an elephant.

Conventional steerable designs, based on rigid links and hinged mechanisms, are best comparable with nature’s endo- or exoskeleton approach. These conventional  designs have proven  to be highly effective at large dimensions, as for example in the scales of an excavator. At the smaller dimensions needed for minimally invasive surgery, however, the fabrication of such hinged structures becomes increasingly difficult.

The muscular hydrostatic skeleton in the arms of Loliginid squid consists out of differently orientated muscle layers (see Figure). Simultaneous contraction of these muscle layers results in a flexible, fluent motion. This led to the development of a new principle of steering via simultaneous actuation of multiple, differently orientated cable layers.

Inspired by nature’s hydrostatic skeleton approach, the multi-maneuvrable tip of the HelixFlex consists of a single compliant segment, and incorporates three different cable layers: one with parallel cables and two with helically-oriented cables. Simultanuous actuation of these cable layers is accomplished via a similarly shaped  joystick in the handle of the instrument. By manually controlling this joystick, the user can control the movement of HelixFlex’ tip in four Degrees of Freedom, resulting in a  fluent motion that greatly reflects the motion of squid tentacles (see movie).

To our knowledge, the HelixFlex is the first instrument that uses simultaneous actuation of parallel- and helical-routed cable layers, and therefore a patent is pending.

*Left: A section view of the Loliginidae squid tentacle showing the differently orientated muscle layers. Right: the steerable tip of HelixFlex containing multiple differently orientated cable layers.
Left: A section view of the Loliginidae squid tentacle showing the differently orientated muscle layers. Right: the steerable tip of HelixFlex containing multiple differently orientated cable layers. [1]




DragonFlex Micro – Towards the Limits of 3D-Printing

Developed in 2012-2015, thickness 5 mm, steering range: ±90º in all directions, complex components made by 3D-printing.

The DragonFlex has been developed in close-collaboration with Dr. Filip Jelinek, former PhD from the BITE-Group and currently employed at ACMIT.

In follow-up of the successful DragonFlex Macro, the DragonFlex Micro has been miniaturized to a 5 mm scale, where special attention has been given to the reliability and precision of the mechanism and optimization of the 3D-printing technique for such small scale components. Developing and optimising new design methodologies for 3D-printing,  a number of prototypes have been manufactured from different materials, resulting in world’s first steerable surgical instrument made entirely by 3D printing.



DragonFlex Macro – Smart Steering by 3D-Printing

Developed in 2010-2011, thickness 15 mm, steering range: ±90º in all directions, made entirely by 3D-printing.

Despite its success, e.g. in prostatectomy, da Vinci’s steerable grasper EndoWrist from Intuitive Surgical has a complex design prone to steel cable fatigue, potential sterilization issues and high associated costs, all of which insinuate a need for an alternative. The aim of our DragonFlex project is to demonstrate a design of a structurally simple handheld steerable laparoscopic grasping forceps free from cable fatigue, while attaining sufficient bending stiffness for surgery and improving on EndoWrist’s maneuverability and dimensions.

Having equal joint functionality to EndoWrist, DragonFlex’s instrument tip contains only four parts, driven and bound by two cables mechanically fixed in the handle. Two orthogonal planar joints feature an innovative rolling link mechanism allowing the cables to follow circular arc profiles of a diameter 1.5 times larger than the width of the instrument shaft. Besides maximizing the cable lifespan, the rolling link was designed to equalize the force requirements on both cables throughout joint rotation, making the handling fluid and effortless. The smart stacked joint design enables control of seven Degrees of Freedom (DOF) by only two cables and seven instrument components in tip, shaft and handgrip altogether.

The DragonFlex prototype was developed by means of 3D-printing, allowing grasping and omnidirectional steering over ±90°, exhibiting promisingly high bending stiffness and featuring extreme simplicity. DragonFlex concept sheds new light on the possibilities of additive manufacturing of surgical instruments, allowing for a feature-packed design, simple assembly, suitability for disposable use and potential MRI compatibility.



Dendritic Instruments – Outreaching the Squid

This VICI-research project is funded by the Netherlands Organization for Scientific Research NWO.


In ‘standard’ minimal access surgery, the surgeon inserts rigid instruments through small incisions in the skin or natural orifices to reach targeted areas inside the human body. This approach drastically reduces the invasiveness of surgery compared to conventional open approaches, yet the reduced size of the surgical entry-point does also severely restrict the maneuverability of the used instrumentation. This lack of instrument maneuverability becomes especially apparent when considering Endoscopic Skull Base Surgery (ESBS). A prime target of ESBS are tumors on the pituitary gland positioned at the skull base, the region that separates the brain from the rest of the head. The nose is used as the surgical entry-point, and due to the rigid nature of the used instrumentation, the surgeon needs to create a straight surgical pathway to the pituitary gland. The limited width of this pathway in combination with the need for multiple instruments severely limits sideway movements of the instruments. This situation leads to a phenomenon called swordfighting wherein the shafts of instruments collide and, moreover, it severely restricts the maneuverability of the individual tools (i.e. grasper, scissors, etc.).

We strive to improve on overall instrument maneuverability with the development of dendritic instruments. A dendritic instrument is a maneuverable single-shaft instrument that branches into multiple independently steerable tools. Such an instrument would eliminate the occurrence of swordfighting, as the number or shafts is reduced to one, while providing the surgeon sufficient maneuverability of the individual tools. This research project is divided into two main topics; the mechanical construction and methods of control of dendritic instruments, such that these instruments are able to be implemented in operating theatre in the near future.


The mechanical construction of a dendritic instrument consists of two basic parts. First, there is the shape memory shaft that should be capable of following a curved trajectory up to the targeted area while providing a stable base. Secondly, there are the individual steerable branches that sprout from this stable base and provide independent maneuverability of each individual tool.

Creating a steerable branch starts with a flexible structure, either containing joints or a compliant backbone. The actuation of such this flexible structure can then be realized by several actuation methods, including the use of electric motors, hydraulic actuators, and shape memory alloys. Our research is focused on a fully mechanical actuation method based on cable-structures. This allows for structures that are easy to miniaturize, eliminates the need for possibly dangerous electric currents, high pressures or high temperatures, and shows high potential for reducing the costs of fabrication.

Besides the obvious requirement that the branches need to be maneuverable, they should also have a certain stiffness in order to cope with external forces that will be present during, for example, tissue manipulation. In our search for a suitable cable-structure to achieve high maneuverability and stiffness, we have developed a cable-structure in which multiple cables are placed at different angles along the longitudinal axis. This structure has already shown great promise and is now in the process of further optimization.


Dendritic instruments consist of many small joints and branches which the surgeon(s) needs to actively steer, in order to perform complex surgical tasks (e.g. suturing or tissue manipulation). The amount of joints in dendritic instruments are even so many, that currently existing prototypes require the cooperation of two surgeons to perform a task which is actually meant for only one surgeon. In other words, dendritic instruments have more Degrees of Freedom (DOF) than any  surgeon can control alone. However, the large amount of DOFs combined with an intuitive method of control is exactly what is required for dendritic instrumentation to become a reality.

The BITE research method to dendritic instrument control is one which is exploration driven. The optimal mechanical construction and DOF configuration are still being researched. Hence, the accompanying control interface or instrument handle cannot be designed yet. To investigate the best methods of control, virtual instruments are simulated in a Virtual Environment (VE). Physical hand movements and gestures are measured with RGB-D Kinect cameras, and mapped to virtual instrument movements. By playing with the coupling between hand DOF and instrument DOF, new control strategies are tested and reverse engineered to ultimately discover the best method for dendritic instrument control.


Image adapted from (previously

I-Flex – Steering Towards Miniaturization Limits

Developed in 2007-2008, diameter 0.9 mm, steering range: ±90º in all directions.

The retina is a light-sensitive layer at the inside of the eye. The macula is the region at the center of the retina with the highest concentration of light-sensitive cells. Macula degeneration – a disease which is a major cause of blindness –  is caused by a disfunctioning choroid layer under the macula. A way to treat macula degeneration is to perform surgery to the choroid layer via a tiny incision in the retina near the macula.  Reaching the choroid layer under the macula is extremely difficult as the surgeon has to operate through the incision under an angle while avoiding damage to the extremely delicate macula layer.  A steerable instrument could potentially solve this issue by making it easier to steer the instrument through the incision.

The largest design and fabrication challenge of such an instrument is the extreme miniaturization of the steerable mechanism in the tip. Down-scaling our patented Cable-Ring mechanism, already applied in the Endo-Periscope III and MicroFlex, to a very small scale, resulted in the  I-Flex – world’s smallest steerable surgical instrument that can be steered in all directions. The compliant tip has a diameter of only  0.9 mm and is constructed from 7 steel cables and a spring. Being equipped with a tiny gripper, the tip can be steered in two Degrees of Freedom (DOF). The instrument contains a novel handle that combines intuitive steering with a fine and precise pincer grip.

Feedback of experienced eye-surgeons from the Eye Hospital in Rotterdam has led to the development of a second prototype which is currently under construction. This instrument incorporates a different handle, allowing further miniaturization of the steerable tip to a diameter of only 0.45 mm – three times the size of a human hair.