Current minimally invasive laparoscopic tissue harvesting techniques for pathological purposes involve taking multiple imprecise and inaccurate biopsies, usually using a laparoscopic forceps or other assistive devices. Potential hazards, e.g. cancer spread when dealing with tumorous tissue, call for a more reliable alternative in the form of a single laparoscopic instrument capable of repeatedly taking a precise biopsy at a desired location. Therefore, the aim of this project was to design a disposable laparoscopic instrument tip, incorporating a centrally positioned glass fibre for tissue diagnostics; a cutting device for fast, accurate and reliable biopsy of a precisely defined volume and a container suitable for sample storage.
Inspired by the sea urchin’s chewing organ, Aristotle’s lantern, and its capability of rapid and simultaneous tissue incision and enclosure by axial translation, we designed a crown-shaped collapsible cutter operating on a similar basis. Based on a series of in vitro experiments indicating that tissue deformation decreases with increasing penetration speed leading to a more precise biopsy, we decided on the cutter’s forward propulsion via a spring. Apart from the embedded spring-loaded cutter, the biopsy harvester comprises a smart mechanism for cutter preloading, locking and actuation, as well as a sample container.
A real-sized biopsy harvester prototype was developed and tested in a universal tensile testing machine at TU Delft. In terms of mechanical functionality, the preloading, locking and actuation mechanism as well as the cutter’s rapid incising and collapsing capabilities proved to work successfully in vitro. Further division of the tip into a permanent and a disposable segment will enable taking of multiple biopsies, mutually separated in individual containers. We believe the envisioned laparoscopic opto-mechanical biopsy device will be a solution ameliorating time demanding, inaccurate and potentially unsafe laparoscopic biopsy procedures.
Publications
- Trogu P. (2017). Giorgio Scarpa’s model of a sea urchin inspires new instrumentation. Leonardo, MIT press, in press.
- Jelinek, F. (2015) Steering and Harvesting Technology for Minimally Invasive Biopsy. PhD-thesis, Delft University of Technology, Delft, the Netherlands, ISBN 978-94-6203-742-7, 172 p.
- Jelinek F., Goderie J., Rixel A. van, Stam D., Zenhorst J., Breedveld P. (2014). Bioinspired crown-cutter – the impact of tooth quantity and bevel type on tissue deformation, penetration, and tooth collapsibility. ASME Journal of Medical Devices, Vol. 8, Dec. 2014, pp. 041009-1-041009-6.
- Jelinek F., Arkenbout E.A., Sakes A., Breedveld P. (2014). Minimally invasive surgical instruments with an accessory channel capable of integrating fibre-optic cable for optical biopsy: a review of the state of the art. Proc. of the Institution of Mechanical Engineers, Part H, 228(8), pp 843-853.
- Jelinek F., Smit G., Breedveld P. (2014). Bioinspired spring-loaded biopsy harvester – experimental prototype design and feasibility tests. ASME Journal of Medical Devices, Vol. 8, March 2014, pp. 015002-1-015002-6.
- Jelinek F., Breedveld P. (2013). Bio-Inspired Spring-Loaded Biopsy Harvester. ASME Journal of Medical Devices, Vol. 7, June 2013, pp. 020912-1-020912-2 (also published in Proc. 2013 ASME Design of Medical Devices Conference, April 8-11, Minneapolis, MN, USA).
- Jelinek F., Breedveld P. (2013). Bio-inspired spring-loaded biopsy harvester. Proc. 2013 ASME Design of Medical Devices Conference, April 8-11, Minneapolis, MN, USA, 2 p.
- Jelinek F., Goderie J., Rixel A. van, Stam D., Zenhorst J., Breedveld P. (2013). Crown cutter – the impact of tooth quantity and bevel type on tissue deformation and penetration forces. Proc. ASME Design of Medical Devices Conference – Europe Edition 2013, Oct. 7-9, TU Aula Conference Centre Delft, Delft, the Netherlands, 1 p.
- Jelinek F., Goderie J., Rixel A. van, Stam D., Zenhorst J., Breedveld P. (2013). Crown cutter – the impact of tooth quantity and bevel type on tissue deformation and penetration forces. Proc. 25th International Conference of Society for Medical innovation and Technology (SMIT), Sept. 5-7, Baden-Baden, Germany, 1 p.
- Jelinek F., Breedveld P. (2013). Bio-inspired spring-loaded biopsy harvester. Proc. 21th International Congress of the European Association for Endoscopic Surgery (EAES) – “Amazing Technologies” session, June 19-22, Vienna, Austria, 1 p.
- Jelinek F., Breedveld P. (2013). Bio-inspired spring-loaded biopsy harvester. Abstr. 4rd Dutch Bio-Medical Engineering Conference, Jan. 24-25, Egmond aan Zee, the Netherlands, 1 p.