All posts by Esther de Kater

Design of a steerable bone screw

During spinal fusion surgery multiple vertebrae are fused by fixating them together with an internal brace. The brace is connected to a vertebra with pedicle screws. The inside of the bone (cancellous bone) is too weak to achieve sufficient grip. Therefore, screw fixation mainly relies on locations where the screw is in direct contact with the surrounding  layer of the much harder cortical bone. We are developing a steerable bone drill in order to increase the contact area of screws and cortical bone by drilling along the cortical bone layer. An optical sensing system that can differentiate the two types of bone tissue will help the surgeon find and maintain the right drilling trajectory. Furthermore, a novel anchoring device that is flexible during insertion, but becomes rigid once in place will replace straight pedicle screws.

There are multiple graduation projects available related to optical sensing, bone drilling and anchoring.

  • Development of a sensor concept for the acquisition of 3D data
    Contact: Merle Losch, m.s.losch@tudelft.nl
  • Design of a drill prototype to provide directional feedback
    Contact: Merle Losch, m.s.losch@tudelft.nl
  • Design of  flexible screw that can become incredibly stiff in order to transfer the forces acting of the screw
    Contact: Esther de Kater, e.p.dekater@tudelft.nl

  • Design of a flexible screw that adheres to the bone surface in order to transfer the forces acting on the screw
    Contact: Esther de Kater, e.p.dekater@tudelft.nl

Steerable bone drill

This research project is funded by the Netherlands Organization for Scientific Research NWO and conducted in collaboration with Philips Research, DEAM, Karolinska University Hospital in Sweden, Amsterdam University Medical Center and Reinier de Graaf Hospital in Delft.

Spinal fusion is the surgical procedure of stiffening parts of the spinal column with screws and rods to, among others, reduce back pain for patients affected by multiple diseases. Vertebrae have an outer layer of hard cortical bone surrounding the softer core that consists of cancelous bone. The strength of the connection between vertebra and screw mainly relies on the contact area with the cortical bone, but drilling close to this cortical bone layer is risky, as it can lead to cortical breaches. These breaches can have severe complications, especially since important neural and vascular structures run along the spinal column.

This research will focus on creating a better fixation of the screws and preventing complications that can arise due to cortical breaches by developing a steerable bone drill with an optical sensing system in the tip. This allows the surgeon to drill a curved path along the cortical bone layer while getting real time information about the location of the drill. Regular stiff screws will not fit this curved hole, thus a new anchoring device will be developed that is flexible when introduced to the curved hole and that can become rigid to generate the needed fixation.